News and Commentary Archive

Explore recent scientific discoveries and news as well as CLBB events, commentary, and press.

Mission

The Center for Law, Brain & Behavior puts the most accurate and actionable neuroscience in the hands of judges, lawyers, policymakers and journalists—people who shape the standards and practices of our legal system and affect its impact on people’s lives. We work to make the legal system more effective and more just for all those affected by the law.

Hyperactivity of Caudate, Parahippocampal, and Prefrontal Regions During Working Memory in Never-Medicated Persons at Clinical High-Risk for Psychosis

By Heidi W. Thermenos, Richard J. Juelich, Samantha R. DiChiara, Raquelle I. Mesholam-Gately, Kristen A. Woodberry, Joanne Wojcik, Nikos Makris, Matcheri S. Keshavan, Susan Whitfield-Gabrieli, Tsung-Ung W. Woo, Tracey L. Petryshen, Jill M. Goldstein, Martha E. Shenton, Robert W. McCarley, and Larry J. Seidman | Schizophrenia Research | March 7, 2016

Abstract:

Background

Deficits in working memory (WM) are a core feature of schizophrenia (SZ) and other psychotic disorders. We examined brain activity during WM in persons at clinical high risk (CHR) for psychosis.

Methods

Thirty-seven CHR and 34 healthy control participants underwent functional MRI (fMRI) on a 3.0 T scanner while performing an N-back WM task. The sample included a sub-sample of CHR participants who had no lifetime history of treatment with psychotropic medications (n = 11). Data were analyzed using SPM8 (2-back > 0-back contrast). Pearson correlations between brain activity, symptoms, and WM performance were examined.

Results

The total CHR group and medication-naive CHR sub-sample were comparable to controls in most demographic features and in N-back WM performance, but had significantly lower IQ. Relative to controls, medication-naïve CHR showed hyperactivity in the left parahippocampus (PHP) and the left caudate during performance of the N-back WM task. Relative to medication-exposed CHR, medication naïve CHR exhibited hyperactivity in the left caudate and the right dorsolateral prefrontal cortex (DLPFC). DLPFC activity was significantly negatively correlated with WM performance. PHP, caudate and DLPFC activity correlated strongly with symptoms, but results did not withstand FDR-correction for multiple comparisons. When all CHR participants were combined (regardless of medication status), only trend-level PHP hyperactivity was observed in CHR relative to controls.

Conclusions

Medication-naïve CHR exhibit hyperactivity in regions that subserve WM. These regions are implicated in studies of schizophrenia and risk for psychosis. Results emphasize the importance of medication status in the interpretation of task – induced brain activity.

Read the full article here.

Working Memory Filtering Continues to Develop into Late Adolescence

By Matthew R. Peverill, Katie A. McLaughlin, Amy S. Finn, and Margaret A. Sheridan | Developmental Cognitive Neuroscience | February 16, 2016

Abstract:

While most measures of working memory (WM) performance have been shown to plateau by mid-adolescence and developmental changes in fronto-parietal regions supporting WM encoding and maintenance have been well characterized, little is known about developmental variation in WM filtering. We investigated the possibility that the neural underpinnings of filtering in WM reach maturity later in life than WM function without filtering. Using a cued WM filtering task (McNab & Klingberg, 2008), we investigated neural activity during WM filtering in a sample of 64 adults and adolescents. Regardless of age, increases in WM activity with load were concentrated in the expected fronto-parietal network. For adults, but not adolescents, recruitment of the basal ganglia during presentation of a filtering cue was associated with neural and behavioral indices of successful filtering, suggesting that WM filtering and related basal ganglia function may still be maturing throughout adolescence and into adulthood.

Read the full article here.