News and Commentary Archive

Explore recent scientific discoveries and news as well as CLBB events, commentary, and press.

Mission

The Center for Law, Brain & Behavior puts the most accurate and actionable neuroscience in the hands of judges, lawyers, policymakers and journalists—people who shape the standards and practices of our legal system and affect its impact on people’s lives. We work to make the legal system more effective and more just for all those affected by the law.

WATCH — Opiate Regulation Policies

The current opiate epidemic has spurred long-overdue scrutiny on the pharmaceutical production and distribution of opiate medication, but it also raises questions of public policy and law regarding the regulation of medical access to and use of opiate medications with high potential for addiction. Expert panelists will address the challenges that arise from efforts to balance restrictions on access to opiates to limit addiction while also preserving sufficient access for legitimate medical management of pain.

This event will take place on Monday, April 3, 2017 at 12:00 pm in Austin Hall, West Classroom (111), Harvard Law School. It is free and open to the public. Lunch will be provided. Continue reading »

Pain in an Era of Armed Conflicts: Prevention and Treatment for Warfighters and Civilian Casualties

By  E. George, I. Elman, L. Becerra, Sheri Berg, and D. Borsook | Progress in Neurobiology | June 2016

Abstract:

Chronic pain is a common squealae of military- and terror-related injuries. While its pathophysiology has not yet been fully elucidated, it may be potentially related to premorbid neuropsychobiological status, as well as to the type of injury and to the neural alterations that it may evoke. Accordingly, optimized approaches for wounded individuals should integrate primary, secondary and tertiary prevention in the form of thorough evaluation of risk factors along with specific interventions to contravene and mitigate the ensuing chronicity. Thus, Premorbid Events phase may encompass assessments of psychological and neurobiological vulnerability factors in conjunction with fostering preparedness and resilience in both military and civilian populations at risk. Injuries per se phase calls for immediate treatment of acute pain in the field by pharmacological agents that spare and even enhance coping and adaptive capabilities. The key objective of the Post Injury Events is to prevent and/or reverse maladaptive peripheral- and central neural system’s processes that mediate transformation of acute to chronic pain and to incorporate timely interventions for concomitant mental health problems including post-traumatic stress disorder and addiction. We suggest that the proposed continuum of care may avert more disability and suffering than the currently employed less integrated strategies. While the requirements of the armed forces present a pressing need for this integrated continuum and a framework in which it can be most readily implemented, this approach may be also instrumental for the care of civilian casualties.

Read the full article here.

Migraine Photophobia Originating in Cone-Driven Retinal Pathways

By , , , , , , , , , , , and 

Abstract:

Migraine headache is uniquely exacerbated by light. Using psychophysical assessments in patients with normal eyesight we found that green light exacerbates migraine headache significantly less than white, blue, amber or red lights. To delineate mechanisms, we used electroretinography and visual evoked potential recording in patients, and multi-unit recording of dura- and light-sensitive thalamic neurons in rats to show that green activates cone-driven retinal pathways to a lesser extent than white, blue and red; that thalamic neurons are most responsive to blue and least responsive to green; and that cortical responses to green are significantly smaller than those generated by blue, amber and red lights. These findings suggest that patients’ experience with colour and migraine photophobia could originate in cone-driven retinal pathways, fine-tuned in relay thalamic neurons outside the main visual pathway, and preserved by the cortex. Additionally, the findings provide substrate for the soothing effects of green light.

Read the entire article here.

Calcitonin Gene-Related Peptide Modulates Heat Nociception in the Human Brain – An fMRI Study in Healthy Volunteers

By Mohammad Sohail Asghar, Lino Becerra, Henrik B. W. Larsson, David Borsook, and Messoud Ashina | PLoS ONE | March 18, 2016

Abstract: 

Background

Intravenous infusion of calcitonin-gene-related-peptide (CGRP) provokes headache and migraine in humans. Mechanisms underlying CGRP-induced headache are not fully clarified and it is unknown to what extent CGRP modulates nociceptive processing in the brain. To elucidate this we recorded blood-oxygenation-level-dependent (BOLD) signals in the brain by functional MRI after infusion of CGRP in a double-blind placebo-controlled crossover study of 27 healthy volunteers. BOLD-signals were recorded in response to noxious heat stimuli in the V1-area of the trigeminal nerve. In addition, we measured BOLD-signals after injection of sumatriptan (5-HT1B/1D antagonist).

Results

Brain activation to noxious heat stimuli following CGRP infusion compared to baseline resulted in increased BOLD-signal in insula and brainstem, and decreased BOLD-signal in the caudate nuclei, thalamus and cingulate cortex. Sumatriptan injection reversed these changes.

Conclusion

The changes in BOLD-signals in the brain after CGRP infusion suggests that systemic CGRP modulates nociceptive transmission in the trigeminal pain pathways in response to noxious heat stimuli.

Read the full article here.

Random Forest Segregation of Drug Responses May define Regions of Biological Significance

By Qasim Bukhari, David Borsook, Markus Rudin, and Lino Becerra | Frontiers in Computational Neuroscience | February 23, 2016

Abstract:

The ability to assess brain responses in unsupervised manner based on fMRI measure has remained a challenge. Here we have applied the Random Forest (RF) method to detect differences in the pharmacological MRI (phMRI) response in rats to treatment with an analgesic drug (buprenorphine) as compared to control (saline). Three groups of animals were studied: two groups treated with different doses of the opioid buprenorphine, low (LD) and high dose (HD), and one receiving saline. PhMRI responses were evaluated in 45 brain regions and RF analysis was applied to allocate rats to the individual treatment groups. RF analysis was able to identify drug effects based on differential phMRI responses in the hippocampus, amygdala, nucleus accumbens, superior colliculus and the lateral and posterior thalamus for drug vs. saline. These structures have high levels of mu opioid receptors. In addition these regions are involved in aversive signaling, which is inhibited by mu opioids. The results demonstrate that buprenorphine mediated phMRI responses comprise characteristic features that allow an unsupervised differentiation from placebo treated rats as well as the proper allocation to the respective drug dose group using the RF method, a method that has been successfully applied in clinical studies.

Read the full article here.