image

Mission

The Center for Law, Brain & Behavior puts the most accurate and actionable neuroscience in the hands of judges, lawyers, policymakers and journalists—people who shape the standards and practices of our legal system and affect its impact on people’s lives. We work to make the legal system more effective and more just for all those affected by the law.

Evaluating the Impact of Cannabis Use on Thalamic Connectivity in Youth at Clinical High Risk of Psychosis

By Lisa Buchy, Tyrone D. Cannon, Alan Anticevic, Kristina Lyngberg, Kristin S. CadenheadBarbara A. Cornblatt, Thomas H. McGlashan, Diana O. Perkins, Larry J. Seidman, Ming T. TsuangElaine F. Walker, Scott W. Woods, Carrie E. Bearden, Daniel H. Mathalon, and Jean Addington | BMC Psychiatry | December 2015

Abstract:

Background

Disruptions in thalamic functional connectivity have been observed in people with schizophrenia and in youth at clinical high risk (CHR) of psychosis. However, the impact of environmental risk factors for psychosis on thalamic dysconnectivity is poorly understood. We tested whether thalamic dysconnectivity is related to patterns of cannabis use in a CHR sample.

Methods

162 CHR and 105 control participants were assessed on cannabis use severity, frequency, and age at onset of first use as part of the North American Prodrome Longitudinal Study and completed resting-state fMRI scans. Whole-brain thalamic functional connectivity maps were generated using individual subjects’ anatomically defined thalamic seeds.

Results

Thalamic connectivity did not significantly correlate with current cannabis use severity or frequency in either CHR or controls. In CHR cannabis users, a significant correlation emerged between attenuated thalamic connectivity with left sensory/motor cortex and a younger age at onset of cannabis use. CHR who used cannabis before age 15 did not differ on thalamic connectivity as compared to CHR who used after age 15 or CHR who were cannabis naïve. No group differences in thalamic connectivity emerged when comparing CHR separated by moderate/high use frequency, low-frequency or cannabis naïve.

Conclusions

Although a younger age at onset of cannabis use may be associated with disrupted thalamo-cortical coupling, cannabis use does not appear to be an identifying characteristic for thalamic connectivity in CHR with moderate/high use frequency compared to low-frequency users or CHR who are cannabis naïve.

Read the full article here.