News and Commentary Archive

Explore recent scientific discoveries and news as well as CLBB events, commentary, and press.

Mission

The Center for Law, Brain & Behavior puts the most accurate and actionable neuroscience in the hands of judges, lawyers, policymakers and journalists—people who shape the standards and practices of our legal system and affect its impact on people’s lives. We work to make the legal system more effective and more just for all those affected by the law.

Traumatic Brain Injury in Individuals at Clinical High Risk for Psychosis

By Stephanie Deighton, Lisa Buchy, Kristin S. Cadenhead, Tyrone D. Cannon, Barbara A. Cornblatt, Thomas H. McGlashan, Diana O. Perkins, Larry J. Seidman, Ming T. Tsuang, Elaine F. Walker, Scott W. Woods, Carrie E. Bearden, Daniel Mathalon, and Jean Addington | Schizophrenia Research | May 7, 2016

Abstract:

Background

Recent research suggests that a traumatic brain injury (TBI) can significantly increase the risk of later development of psychosis. However, it is unknown whether people at clinical high risk (CHR) of psychosis have experienced TBI at higher rates, compared to otherwise healthy individuals. This study evaluated the prevalence of mild TBI, whether it was related to past trauma and the relationship of mild TBI to later transition to psychosis.

Methods

Seven-hundred forty-seven CHR and 278 healthy controls (HC) were assessed on past history of mild TBI, age at first and last injury, severity of worst injury and number of injuries using the Traumatic Brain Injury Interview. Attenuated psychotic symptoms were assessed with the Scale of Psychosis-risk Symptoms. IQ was estimated using the Wechsler Abbreviated Scale of Intelligence and past trauma and bullying were recorded using the Childhood Trauma and Abuse Scale.

Results

CHR participants experienced a mild TBI more often than the HC group. CHR participants who had experienced a mild TBI reported greater total trauma and bullying scores than those who had not, and those who experienced a mild TBI and later made the transition to psychosis were significantly younger at the age at first and most recent injury than those who did not.

Conclusion

A history of mild TBI is more frequently observed in CHR individuals than in HC. Inclusion or study of CHR youth with more severe TBI may provide additional insights on the relationship between TBI and later transition to psychosis in CHR individuals.

Read the entire article here.

Functional Connectivity Dynamics During Film Viewing Reveal Common Networks for Different Emotional Experiences

By Gal Raz, Alexandra Touroutoglou, Christine Wilson-Mendenhall, Gadi Gilam, Tamar Lin, Tal GonenYael Jacob, Shir Atzil, Roee Admon, Maya Bleich-Cohen, Adi Maron-Katz, Talma Hendler, and Lisa Feldman Barrett | Cognitive, Affective, & Behavioral Neuroscience | May 3, 2016

Abstract:

Recent theoretical and empirical work has highlighted the role of domain-general, large-scale brain networks in generating emotional experiences. These networks are hypothesized to process aspects of emotional experiences that are not unique to a specific emotional category (e.g., “sadness,” “happiness”), but rather that generalize across categories. In this article, we examined the dynamic interactions (i.e., changing cohesiveness) between specific domain-general networks across time while participants experienced various instances of sadness, fear, and anger. We used a novel method for probing the network connectivity dynamics between two salience networks and three amygdala-based networks. We hypothesized, and found, that the functional connectivity between these networks covaried with the intensity of different emotional experiences. Stronger connectivity between the dorsal salience network and the medial amygdala network was associated with more intense ratings of emotional experience across six different instances of the three emotion categories examined. Also, stronger connectivity between the dorsal salience network and the ventrolateral amygdala network was associated with more intense ratings of emotional experience across five out of the six different instances. Our findings demonstrate that a variety of emotional experiences are associated with dynamic interactions of domain-general neural systems.

Read the full article here.

Selective Mapping of Psychopathy and Externalizing to Dissociable Circuits for Inhibitory Self-Control

By Alexandra M. Rodman, Erik K. Kastman, Hayley M. Dorfman, Arielle Baskin-Sommers, Kent A. Kiehl, Joseph P. Newman, and Joshua W. Buckholtz | Clinical Psychological Science | May 2, 2016

Abstract:

Antisociality is commonly conceptualized as a unitary construct, but there is considerable evidence for multidimensionality. In particular, two partially dissociable symptom clusters—psychopathy and externalizing—have divergent associations to clinical and forensic outcomes and are linked to unique patterns executive dysfunction. Here, we used fMRI in a sample of incarcerated offenders to map these dimensions of antisocial behavior to brain circuits underlying two aspects of inhibitory self-control: interference suppression and response inhibition. We found that psychopathy and externalizing are characterized by unique and task-selective patterns of dysfunction. Although higher levels of psychopathy predicted increased activity within a distributed frontoparietal network for interference suppression, externalizing did not predict brain activity during attentional control. By contrast, each dimension had opposite associations to frontoparietal activity during response inhibition. These findings provide neurobiological evidence supporting the fractionation of antisocial behavior and identify dissociable mechanisms through which different facets predispose dysfunction and impairment.

Read the full article here.

Calcitonin Gene-Related Peptide Modulates Heat Nociception in the Human Brain – An fMRI Study in Healthy Volunteers

By Mohammad Sohail Asghar, Lino Becerra, Henrik B. W. Larsson, David Borsook, and Messoud Ashina | PLoS ONE | March 18, 2016

Abstract: 

Background

Intravenous infusion of calcitonin-gene-related-peptide (CGRP) provokes headache and migraine in humans. Mechanisms underlying CGRP-induced headache are not fully clarified and it is unknown to what extent CGRP modulates nociceptive processing in the brain. To elucidate this we recorded blood-oxygenation-level-dependent (BOLD) signals in the brain by functional MRI after infusion of CGRP in a double-blind placebo-controlled crossover study of 27 healthy volunteers. BOLD-signals were recorded in response to noxious heat stimuli in the V1-area of the trigeminal nerve. In addition, we measured BOLD-signals after injection of sumatriptan (5-HT1B/1D antagonist).

Results

Brain activation to noxious heat stimuli following CGRP infusion compared to baseline resulted in increased BOLD-signal in insula and brainstem, and decreased BOLD-signal in the caudate nuclei, thalamus and cingulate cortex. Sumatriptan injection reversed these changes.

Conclusion

The changes in BOLD-signals in the brain after CGRP infusion suggests that systemic CGRP modulates nociceptive transmission in the trigeminal pain pathways in response to noxious heat stimuli.

Read the full article here.

Hyperactivity of Caudate, Parahippocampal, and Prefrontal Regions During Working Memory in Never-Medicated Persons at Clinical High-Risk for Psychosis

By Heidi W. Thermenos, Richard J. Juelich, Samantha R. DiChiara, Raquelle I. Mesholam-Gately, Kristen A. Woodberry, Joanne Wojcik, Nikos Makris, Matcheri S. Keshavan, Susan Whitfield-Gabrieli, Tsung-Ung W. Woo, Tracey L. Petryshen, Jill M. Goldstein, Martha E. Shenton, Robert W. McCarley, and Larry J. Seidman | Schizophrenia Research | March 7, 2016

Abstract:

Background

Deficits in working memory (WM) are a core feature of schizophrenia (SZ) and other psychotic disorders. We examined brain activity during WM in persons at clinical high risk (CHR) for psychosis.

Methods

Thirty-seven CHR and 34 healthy control participants underwent functional MRI (fMRI) on a 3.0 T scanner while performing an N-back WM task. The sample included a sub-sample of CHR participants who had no lifetime history of treatment with psychotropic medications (n = 11). Data were analyzed using SPM8 (2-back > 0-back contrast). Pearson correlations between brain activity, symptoms, and WM performance were examined.

Results

The total CHR group and medication-naive CHR sub-sample were comparable to controls in most demographic features and in N-back WM performance, but had significantly lower IQ. Relative to controls, medication-naïve CHR showed hyperactivity in the left parahippocampus (PHP) and the left caudate during performance of the N-back WM task. Relative to medication-exposed CHR, medication naïve CHR exhibited hyperactivity in the left caudate and the right dorsolateral prefrontal cortex (DLPFC). DLPFC activity was significantly negatively correlated with WM performance. PHP, caudate and DLPFC activity correlated strongly with symptoms, but results did not withstand FDR-correction for multiple comparisons. When all CHR participants were combined (regardless of medication status), only trend-level PHP hyperactivity was observed in CHR relative to controls.

Conclusions

Medication-naïve CHR exhibit hyperactivity in regions that subserve WM. These regions are implicated in studies of schizophrenia and risk for psychosis. Results emphasize the importance of medication status in the interpretation of task – induced brain activity.

Read the full article here.