image

Mission

The speed of technology in neuroscience as it impacts ethical and just decisions in the legal system needs to be understood by lawyers, judges, public policy makers, and the general public. The Massachusetts General Hospital Center for Law, Brain, and Behavior is an academic and professional resource for the education, research, and understanding of neuroscience and the law. Read more

Relationship between M100 Auditory Evoked Response and Auditory Radiation Microstructure in 16p11.2 Deletion and Duplication Carriers

By J.I. BermanD. ChudnovskayaL. BlaskeyE. KuschnerP. MukherjeeR. BucknerS. NagarajanW.K. ChungE.H. Sherr and T.P.L. Roberts | American Journal of Neuroradiology | February 11, 2016

Abstract:

BACKGROUND AND PURPOSE: Deletion and duplication of chromosome 16p11.2 (BP4–BP5) have been associated with developmental disorders such as autism spectrum disorders, and deletion subjects exhibit a large (20-ms) delay of the auditory evoked cortical response as measured by magnetoencephalography (M100 latency). The purpose of this study was to use a multimodal approach to test whether changes in white matter microstructure are associated with delayed M100 latency.

MATERIALS AND METHODS: Thirty pediatric deletion carriers, 9 duplication carriers, and 39 control children were studied with both magnetoencephalography and diffusion MR imaging. The M100 latency and auditory system DTI measures were compared between groups and tested for correlation.

RESULTS: In controls, white matter diffusivity significantly correlated with the speed of the M100 response. However, the relationship between structure and function appeared uncoupled in 16p11.2 copy number variation carriers. The alterations to auditory system white matter microstructure in the 16p11.2 deletion only partially accounted for the 20-ms M100 delay. Although both duplication and deletion groups exhibit abnormal white matter microstructure, only the deletion group has delayed M100 latency.

CONCLUSIONS: These results indicate that gene dosage impacts factors other than white matter microstructure, which modulate conduction velocity.

Read the full article here.