image

Mission

The Center for Law, Brain & Behavior puts the most accurate and actionable neuroscience in the hands of judges, lawyers, policymakers and journalists—people who shape the standards and practices of our legal system and affect its impact on people’s lives. We work to make the legal system more effective and more just for all those affected by the law.

Sexual Dimorphic Abnormalities in White Matter Geometry Common to Schizophrenia and Non-Psychotic High-Risk Subjects: Evidence for a Neurodevelopmental Risk Marker?

By Peter Savadjiev, Larry J. Seidman, Heidi Thermenos, Matcheri Keshavan, Susan Whitfield-Gabrieli, Tim J. Crow and Marek Kubicki | Human Brain Mapping | October 15, 2015

Abstract:

The characterization of neurodevelopmental aspects of brain alterations require neuroimaging methods that reflect correlates of neurodevelopment, while being robust to other progressive pathological processes. Newly developed neuroimaging methods for measuring geometrical features of the white matter fall exactly into this category. Our recent work shows that such features, measured in the anterior corpus callosum in diffusion MRI data, correlate with psychosis symptoms in patients with adolescent onset schizophrenia and subside a reversal of normal sexual dimorphism. Here, we test the hypothesis that similar developmental deviations will also be present in nonpsychotic subjects at familial high risk (FHR) for schizophrenia, due to genetic predispositions. Demonstrating such changes would provide a strong indication of neurodevelopmental deviation extant before, and independent of pathological changes occurring after disease onset. We examined the macrostructural geometry of corpus callosum white matter in diffusion MRI data of 35 non-psychotic subjects with genetic (familial) risk for schizophrenia, and 26 control subjects, both male and female. We report a reversal of normal sexual dimorphism in callosal white matter geometry consistent with recent results in adolescent onset schizophrenia. This pattern may be indicative of an error in neurogenesis and a possible trait marker of schizophrenia.

Read the full paper here.