News and Commentary Archive

Explore recent scientific discoveries and news as well as CLBB events, commentary, and press.

Mission

The speed of technology in neuroscience as it impacts ethical and just decisions in the legal system needs to be understood by lawyers, judges, public policy makers, and the general public. The Massachusetts General Hospital Center for Law, Brain, and Behavior is an academic and professional resource for the education, research, and understanding of neuroscience and the law. Read more

Pennsylvania Juvenile Offenders Given Psychiatric Drugs at High Rates

By Halle Stockton | Juvenile Justice Information Exchange | October 25, 2015

It’s the end of the line for these Pennsylvania kids. They’ve fallen through every safety net, and they keep making the same mistakes or more violent ones.

The kids — nearly all black or white teenage boys — are sent hours away from their families to youth correctional facilities, sterile lock-downs surrounded by barbed wire or cabins so far out in the wilderness they’re considered secure even without a fence.

They are the toughest kids in the juvenile justice system. And, in some ways, the most vulnerable.  Continue reading »

PTEN is Required to Maintain Luminal Epithelial Homeostasis and Integrity in the Adult Mammary Gland

By Amy N. Shore, Chi-Hsuan Chang, Oh-Joon Kwon, Matthew C. Weston, Mei Zhang, Li Xi, and Jeffrey M. Rosen | Developmental Biology | October 23, 2015

Abstract:

In the mammary gland, PTEN loss in luminal and basal epithelial cells results in differentiation defects and enhanced proliferation, leading to the formation of tumors with basal epithelial characteristics. In breast cancer, PTEN loss is associated with a hormone receptor-negative, basal-like subtype that is thought to originate in a luminal epithelial cell. Here, we show that luminal-specific PTEN loss results in distinct effects on epithelial homeostasis and mammary tumor formation. Luminal PTEN loss increased proliferation of hormone receptor-negative cells, thereby decreasing the percentage of hormone receptor-positive cells. Moreover, luminal PTEN loss led to misoriented cell divisions and mislocalization of cells to the intraluminal space of mammary ducts. Despite their elevated levels of activated AKT, Pten-null intraluminal cells showed increased levels of apoptosis. One year after Pten deletion, the ducts had cleared and no palpable mammary tumors were detected. These data establish PTEN as a critical regulator of luminal epithelial homeostasis and integrity in the adult mammary gland, and further show that luminal PTEN loss alone is not sufficient to promote the progression of mammary tumorigenesis.

Read the full article here.

Triptans Disrupt Brain Networks and Promote Stress-induced CSD-like Responses in Cortical and Subcortical Areas

By , , , , , , and 

Abstract:

A number of drugs, including triptans, promote migraine chronification in susceptible individuals. In rats, a period of triptan administration over 7 days can produce “latent sensitization” (14 days after discontinuation of drug) demonstrated as enhanced sensitivity to presumed migraine triggers such as environmental stress and lowered threshold for electrically induced cortical spreading depression (CSD). Here, we have used fMRI to evaluate the early changes in brain networks at day 7 of sumatriptan administration that may induce latent sensitization as well as the potential response to stress. Following continuous infusion of sumatriptan, rats were scanned to measure changes in resting state networks and the response to bright light environmental stress. Rats receiving sumatriptan, but not saline infusion, showed significant differences in default mode, autonomic, basal ganglia, salience, and sensorimotor networks. Bright light stress produced CSD-like responses in sumatriptan treated but not control rats. Our data show the first brain related changes in a rat model of medication overuse headache and suggest that this approach could be used to evaluate the multiple brain networks involved that may promote this condition.

Read the full article here.

Nicotine Dependence and Psychosis in Bipolar Disorder and Schizoaffective Disorder, Bipolar Type

By Elena Estrada, Sarah M. Hartz, Jeffrey Tran, Donald M. Hilty, Pamela Sklar, Jordan W. Smoller, Carlos N. Pato, Michele T. Pato, and Genomic Psychiatry Cohort Consortium | American Journal of Medical Genetics | October 15, 2015

Abstract:

Patients with Bipolar disorder smoke more than the general population. Smoking negatively impacts mortality and clinical course in Bipolar disorder patients. Prior studies have shown contradictory results regarding the impact of psychosis on smoking behavior in Bipolar disorder. We analyzed a large sample of Bipolar disorder and Schizoaffective disorder, Bipolar Type patients and predicted those with a history of psychosis would be more likely to be nicotine dependent. Data from subjects and controls were collected from the Genomic Psychiatry Cohort (GPC). Subjects were diagnosed with Bipolar disorder without psychosis (N = 610), Bipolar disorder with psychosis (N = 1544). Participants were classified with or without nicotine dependence. Diagnostic groups were compared to controls (N = 10065) using logistic regression. Among smokers (N = 6157), those with Bipolar disorder had an increased risk of nicotine dependence (OR = 2.5; P < 0.0001). Patients with Bipolar disorder with psychosis were more likely to be dependent than Bipolar disorder patients without psychosis (OR = 1.3; P = 0.03). Schizoaffective disorder, Bipolar Type patients had more risk of nicotine dependence when compared to Bipolar disorder patients with or without psychosis (OR = 1.2; P = 0.02). Bipolar disorder patients experiencing more severity of psychosis have more risk of nicotine dependence.

Read the full paper here.

Sexual Dimorphic Abnormalities in White Matter Geometry Common to Schizophrenia and Non-Psychotic High-Risk Subjects: Evidence for a Neurodevelopmental Risk Marker?

By Peter Savadjiev, Larry J. Seidman, Heidi Thermenos, Matcheri Keshavan, Susan Whitfield-Gabrieli, Tim J. Crow and Marek Kubicki | Human Brain Mapping | October 15, 2015

Abstract:

The characterization of neurodevelopmental aspects of brain alterations require neuroimaging methods that reflect correlates of neurodevelopment, while being robust to other progressive pathological processes. Newly developed neuroimaging methods for measuring geometrical features of the white matter fall exactly into this category. Our recent work shows that such features, measured in the anterior corpus callosum in diffusion MRI data, correlate with psychosis symptoms in patients with adolescent onset schizophrenia and subside a reversal of normal sexual dimorphism. Here, we test the hypothesis that similar developmental deviations will also be present in nonpsychotic subjects at familial high risk (FHR) for schizophrenia, due to genetic predispositions. Demonstrating such changes would provide a strong indication of neurodevelopmental deviation extant before, and independent of pathological changes occurring after disease onset. We examined the macrostructural geometry of corpus callosum white matter in diffusion MRI data of 35 non-psychotic subjects with genetic (familial) risk for schizophrenia, and 26 control subjects, both male and female. We report a reversal of normal sexual dimorphism in callosal white matter geometry consistent with recent results in adolescent onset schizophrenia. This pattern may be indicative of an error in neurogenesis and a possible trait marker of schizophrenia.

Read the full paper here.